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Abstract: The most often used approaches to obtaining and using residuals in applied work with time 
series models, are unified and documented with both partially-known and new features. Specifically, three 
different types of residuals, namely “conditional residuals”, “unconditional residuals” and “innovations”, 
are considered with regard to (i) their precise definitions, (ii) their computation in practice after model 
estimation, (iii) their approximate distributional properties in finite samples, and (iv) potential 
applications of their properties in model diagnostic checking. The focus is on both conditional and 
unconditional residuals, whose properties have received very limited attention in the literature. However, 
innovations are also briefly considered in order to provide a comprehensive description of the various 
classes of residuals a time series analyst might find in applied work. Theoretical discussion is 
accompanied by practical examples, illustrating (a) that routine application of standard model-building 
procedures may lead to inaccurate models in cases of practical interest which are easy to come across, 
and (b) that such inaccuracies can be avoided by using some of the new results on conditional and 
unconditional residuals developed with regard to points (iii) and (iv) above. For ease and clarity of 
exposition, only stationary univariate autoregressive moving average models are considered in detail, 
although extensions to the multivariate case are briefly discussed as well. 
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1. INTRODUCTION 

 

 The approach to time series model building and forecasting introduced three decades ago by Box and 
Jenkins (1976) still represents one of the fundamental cornerstones in modern time series analysis. Since 
its original development, the usefulness of the so-called “Box-Jenkins approach” has been demonstrated 
through a massive number of publications dealing with both practical applications and theoretical 
contributions, many of which have been surveyed in such popular textbooks as Mills (1990), Harvey 
(1993), Box et al. (1994), Reinsel (1997), Franses (1998), Peña et al. (2001), Brockwell and Davis 
(2002), and Peña (2005). 

 This article contributes to the current state of the Box-Jenkins approach by presenting some 
theoretical and numerical properties of several classes of residuals in time series models which do not 
seem to have received much attention in the literature. Along with some partially-known results, new 
theoretical derivations are presented together with applications in model diagnostic checking, which is 
perhaps the most fundamental (although sometimes overlooked) stage in the Box-Jenkins iterative 
approach to building time series models. For ease and clarity of exposition, this article deals mainly with 
stationary, univariate autoregressive moving average (ARMA) models. Nonetheless, extensions to the 
case of stationary multivariate models are also considered, implying that similar results to those presented 
below can be shown to hold for any time series model which can be cast into a standard, stationary vector 
ARMA model, including, among many others, transfer function-noise models (Mauricio 1996) and 
partially nonstationary multivariate models for cointegrated processes (Mauricio 2006a). 

 Residuals constitute a critical piece of information at the diagnostic checking stage of a tentatively 
entertained model, where one seeks evidence that either assesses the adequacy of the model or provides 
directions along which it might be modified. The usual approach to deciding on these subjects consists of 
comparing patterns in computed residuals to those implied by their expected distributional properties 
under the assumption that the entertained model is adequate. Hence, in any given practical setting, it 
seems important to know which residuals are being used for model diagnostic checking (i.e., how such 
residuals have been actually computed), and which distributional properties should observed patterns in 
such residuals be compared to. In this respect, it is a standard practice at the diagnostic checking stage 
simply to compare residual patterns to those of Gaussian white noise (see, for example, Mills 1990, ch. 
8; Box et al. 1994, ch. 8; Reinsel 1997, ch. 5; Franses 1998, ch. 3; Li 2004; and Peña 2005, ch. 11). 
However, it is at least partially known (see Harvey 1993, p. 76, for a general statement on this subject) 
that residuals from ARMA models do not have the statistical properties assumed on the random shocks of 
such models. Hence, the above standard practice, although firmly established, should not be 
recommended in general. A detailed simulation study supporting this point of view (especially for models 
with seasonal structure) was given nearly thirty years ago by Ansley and Newbold (1979), and, to some 
extent, new results developed in the present article provide a theoretical justification for the empirical 
findings of these authors. 

 Various types of residuals are currently available for being used at the diagnostic checking stage of a 
tentative model. Thus, as it often happens with parameter estimation (see Newbold et al. 1994), residual 
calculations usually differ among different computer programs for analyzing time series data. In fact, 
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there seems to exist some confusion in current practice as to which residuals are used in any given 
empirical work with time series models, how are they computed, and which are their theoretical 
distributional properties. Hence, the fundamental aim of the present article is to make practically 
accessible for time series analysts both partially-known and new results on residuals from time series 
models, by means of showing what might be found (and, to some extent, what should be done) in 
practice when dealing with residuals after estimation of any given model. It must be stressed that 
residuals are important because observed patterns in their plots and/or in their sample autocorrelations, 
are usually taken as an indication of (apart from possible outliers) a misspecified model structure which 
needs to be reconsidered. In order to use this idea in practice as effectively as possible, one should know 
as much as possible about the generating mechanism of residuals on which diagnostic checks are applied. 
Note that acceptance or reformulation of a tentatively entertained model might simply arise due to its 
inefficient estimation as well as due to a poor diagnostic checking procedure, regardless of whether the 
form of the model is adequate. In particular, forecasts coming from an inefficiently fitted and/or poorly 
diagnostically checked model, might be useless both on their own and as a reference point when assessing 
the performance of new forecasting methods. 

 In Section 2 of this article, three different types of residuals, namely “conditional residuals”, 
“unconditional residuals” and “innovations”, are precisely defined, and several explicit expressions are 
given for computing them in practice. In Section 3, it is shown (i) that both conditional and unconditional 
residuals follow approximate zero-mean distributions in finite samples, with covariance matrices for 
which explicit and easily computable expressions are given for the first time, and (ii) that invertibility 
plays a key role for establishing statistical convergence of residuals to white noise, implying that 
conditional and unconditional residual autocorrelations should be interpreted carefully in applied work 
with models whose parameter values lie on or near the boundary of the invertibility region. In Section 4, 
it is shown that a set of “normalized” (i.e., homoskedastic and uncorrelated) residuals can be obtained in 
any of several equivalent ways; according to previous work on the subject, using this set of residuals for 
diagnostic checking usually improves the chances of not rejecting a tentative model with autocorrelated 
conditional or unconditional residuals when the model is adequately specified. In Section 5, the potential 
practical advantages of using a proper set of residuals for diagnostic checking are illustrated through 
practical examples. Some guidelines on extending results to the case of multivariate time series models 
are given in Section 6. Finally, additional discussion and conclusions are provided in Section 7. 

 

2. RESIDUAL DEFINITIONS AND COMPUTATIONS IN UNIVARIATE MODELS 

 

 Let an observed time series w�=�[w1,�w2,�…,�wn�]
T be generated by a stationary process {Wt�} 

following the model 
 ( ) ( )t tB W B A  , (1) 

where 1( ) 1
p i
i iB B    and 1( ) 1

q i
i iB B    are polynomials of degrees p and q, B is the 

backshift operator, E[ ]t t tW W W  , and {�At�} is a white noise process with variance σ2�>�0. For 
stationarity, the roots of ( ) 0x   must lie outside the unit circle; a similar condition on ( )x  ensures 
that the model is invertible. It is also assumed that ( )x  and ( )x  do not share any common factor. 
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 Let T
1 2[ , ,..., ]nW W WW     (n×1), T

1 2[ , ,..., ]nA A AA  (n×1), and U*�=� 1 0[ ,...,pW W
  , 

T
1 0,..., ]qA A  [(�p+q)×1], and consider Eq. (1) for t = 1, 2, …, n. Then, w can be regarded as a 

particular realization of a random vector T
1 2[ , ,..., ]nW W WW  following the model 

 *  D W D A VU , (2) 

where Dφ and Dθ are n×n parameter matrices with 1’s on the main diagonal and −φj and −θj, 
respectively, down the j�th subdiagonal, and V is an an n×(�p+q) matrix with ij p i jV    (i = 1, …, 
p; j = i, …, p), ijV   q i j p    (i = 1, …, q; j = p + i, …, p + q), and zeros elsewhere. 

 A useful approach to introducing different methods for computing residuals from estimated ARMA 
models, consists of considering which residuals arise naturally within different methods for computing the 
exact (unconditional) log-likelihood function for univariate models of the form (1) or (2). Under the 
assumption that {Wt�} is a Gaussian (Normal) process, the exact log-likelihood computed at a given set of 
parameter estimates T

1 1
ˆ ˆ ˆˆ ˆˆ[ , ,..., , ,..., ]p q      and 2̂ , can be written as 

 12 2 2 T 1
2

ˆ ˆ ˆˆ ˆ ˆ( , | ) [ log(2 ) log | | ]l n     W Ww w w    , (3) 

where T
1 2[ , ,..., ]nw w ww     with ˆt tw w    (t = 1, 2, …, n), ̂  is an estimate of E[Wt�], and the 

n×n matrix ˆ
W  is an estimate of the theoretical “auto-covariance” matrix 2 TE[ ]W WW   . 

 Noting (2), it can be seen that the auto-covariance matrix W  is given by 

 1 T T 1T 1 1T( ) ( )   
      W D D D V V D K I Z Z K   , (4) 

where 1
 
K D D , 1


Z D V  and 2 T

*E[ ]  U U  are n×n, n×(�p+q) and (�p+q)×(�p+q), 
respectively, parameter matrices, with Ω being readily expressible in terms of 1 1,..., , ,...,p q     as 
described, for example, in Ljung and Box (1979). Hence, using Eq. (4), the quadratic form T 1ˆ

Ww w   in 
Eq. (3) can be written as 
 T 1 T T T 1ˆˆ ˆ ˆ ˆ ˆ( )  Ww w w K I Z Z Kw     , (5) 

where K̂ , Ẑ  and ̂  are estimates of the corresponding parameter matrices defined below (4). From Eq. 
(5), three different classes of residuals can be defined for a given set of parameter estimates as follows: 

Definition 1 – Conditional Residuals. The “conditional residuals” associated with Eq. (5) are the 
elements of the n×1 vector 0 ˆâ Kw . □ 

Definition 2 – Unconditional Residuals. The “unconditional residuals” associated with Eq. (5) are the 
elements of the n×1 vector T 1 1 0

0
ˆˆ ˆ ˆ ˆ( )   â I Z Z Kw â  , where 0̂  is an estimate of the n×n 

matrix Σ0=I+ZΩZT, or, equivalently (e.g., Dhrymes 2000, p.44), Σ0=[I−Z(Ω−1+ZTZ)−1ZT]−1. □ 

Definition 3 – Innovations. The “innovations” associated with Eq. (5) are the elements of the n×1 
vector 1 1 0ˆ ˆˆ( )  ê L w KL â , where L̂  is an estimate of the n×n unit lower-triangular matrix L in 
the factorization 

 

1 21 1

21 2 2T

1 2

1 0 0 0 0 1

1 0 0 0 0 1

1 0 0 0 0 1

n

n

n n n

F L L

L F L

L L F

   
   
    
   
      

W LFL

  

  

           

  

, 

with Ft�>�0 for every t = 1, 2, …,n. □ 
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 Using Definitions 1 through 3, it can be seen that (5) can be written in three equivalent ways as 
T 1 0T 1 0 T T 1

0 0
ˆ ˆ ˆ ˆ    Ww w â â â â ê F ê    , where F̂  is an estimate of the diagonal matrix F in 

Definition 3. Note also, as a by-product, that ˆ| |W  in (4) equals both 0
ˆ| |  and ˆ| |F . Hence, any out of 

the three types of residuals defined previously can be used to compute the exact log-likelihood given in 
(3). Some links between residuals defined thus far and usual ideas about residuals in classical time series 
analysis are considered in the following remarks. 

Remark 1. The univariate ARMA model given in (2) can be written as * A KW ZU , where K and 
Z are defined below (4). Hence, for a given set of parameter estimates, the conditional residual vector 
(Definition 1) can be written as 

 0
*

ˆ Ê[ | , ]   â Kw A W w U 0 , (6) 

which represents the estimated expectation of the random-shock vector A given an observed time series 
w, under the condition that U*�=�0 (i.e., that 1 0 1 0... ... 0p qW W A A        ). On the other 
hand, the unconditional residual vector (Definition 2) can be written as 

 
T 1 1 T 1 T

1 T 1 T
*

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ,

  

 

      

    

â I Z Z Kw I Z Z Z Z Kw

Kw Z Z Z Z Kw Kw Zû

 



 

  
 

with û* being defined as 1 T 1 T
*

ˆ ˆ ˆ ˆ ˆ( )  û Z Z Z Kw  . Additionally, it can be shown (see Box et al. 
1994, pp. 292-294) that û* so defined equals the estimated conditional expectation *Ê[ | ]U W w  
(which is usually referred to as the “back-casted” value of the “pre-sample” vector U*), implying in turn 
that 
 *

ˆ ˆ Ê[ | ]   â Kw Zû A W w . (7) 

 In contrast to (6), Eq. (7) represents the estimated expectation of A for an observed time series w 
under no additional conditions. 

Remark 2. Eq. (6) implies that 0ˆ ˆ
 D â D w  (recall from (4) that 1

 
K D D ), so that the elements 

of â0 can be computed recursively as 0 0
1 1

ˆˆˆ ˆˆ ˆ[ ( ) ]
p q
i it t i t i i t ia w w a            (t = 1, …, n), 

with ˆ 0jw    (i.e., ˆjw  ) and 0ˆ 0ja   for j < 1. On the other hand, Eq. (7) implies that 
ˆ ˆ ˆ
   D â D w Vû  (recall from (4) that 1

 
K D D  and 1


Z D V ), so that the elements of â  

can be computed recursively as 1 1
ˆˆˆ ˆ[ ( ) ]

p q
i it t i t i i t iâ w w â            (t = 1, …, n), with 

values for ˆjw   ( 1 ,..., 0j p  ) and âj ( 1 ,..., 0j q  ) taken from the back-cast vector û* given 
above (7) (note, however, that Definition 2 suggests a more direct method for computing â). Hence, both 
of 0

tâ  and ât are simply differences between an observed value wt and a corresponding fitted value (i.e., 
they are one-step-ahead forecast errors), which means that both conditional and unconditional residuals 
are residuals in a fully usual sense. 

Remark 3. The innovations introduced in Definition 3 arise naturally when considering the “innovations 
form” of the exact log-likelihood (3), described, for example, in Ansley (1979) and Box et al. (1994, pp. 
275-279); see also Mélard (1984) for a description of the innovations form of (3) from the perspective of 
state-space methods. Despite the fact that innovations do not follow right from t = 1 the recursive 
relations considered in Remark 2, they can still be interpreted as one-step-ahead forecast errors (see 
Brockwell and Davis 2002, pp. 100-108), so that innovations are also residuals in a fairly usual sense. 
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Remark 4. Other types of residuals have been considered in previous literature on ARMA model 
building. For example, a type of residuals which is frequently used in practice (especially with regard to 
conditional least-squares estimation of pure autoregressive models) can be defined through the recursions

1 1
ˆˆˆ ˆˆ ˆ[ ( ) ]

p q
i it t i t i i t ic w w c            for t = p+1, …, n, with ˆjc  for j ≤ p either set to 

zero or estimated (back-casted) from the data. For this type of residuals, the p initial values 1̂c , 2ĉ , …, 
ˆpc  are usually not reported, which may constitute an important loss of information (e.g., with regard to 
possible outliers) especially when p is large (e.g., when dealing with seasonal autoregressive structures; 
see Mauricio 1995, pp. 288-290, for an example). This type of residuals is not considered further here. 

 

3. RESIDUAL PROPERTIES IN UNIVARIATE MODELS 

 

 The three types of residuals considered in Section 2 are all different from each other. This might 
explain, at least to some extent, why different computer programs usually generate different residuals 
from a given estimated model for a given time series, even when such programs had produced similar 
parameter estimates (see, however, Newbold et al. 1994, for an exercise showing that different computer 
programs usually calculate notably different parameter estimates, which makes things for the practitioner 
even more confusing). Nonetheless, some unifying sense can be gained from the fact that the three types 
of residuals considered in Section 2 share the following properties: (i) all of them are associated with the 
exact log-likelihood given in (3), (ii) all of them can be expressed in terms of the unconditional residual 
vector, as seen in Definitions 1 through 3, and (iii) all of them can be used to compute a unique set of 
“normalized” residuals in any of several equivalent ways. This last property is considered in Section 4 by 
means of using some of the theoretical properties of residuals to which we now turn. 

Theorem 1 – Properties of Conditional Residuals. Let 0 Â KW  be the random vector associated with 
the conditional residuals given in Definition 1, under the assumption that the true parameter values  , 

1,..., p  , 1 ,..., q   of the stationary model (2) are known. Then: 

(A) 0E[ ]Â 0 , 0 2 TVar[ ] ( ) Â I Z Z , and 

(B) 0 0 T 2 TE[( )( ) ]   Â A Â A Z Z . □ 

Proof. Part (A) follows from 0Â KW  with E[ ]W 0  and Var[ ]W 2 W , where W  is given in 
(4). Part (B) follows from Remark 1 (i.e., 0

* Â A ZU ) and the definition of   given below (4). ■ 

Theorem 2 – Properties of Unconditional Residuals. Let 1 0
0

ˆ A Â  be the random vector associated 
with the unconditional residuals given in Definition 2, under the assumption that the true parameter 
values  , 1,..., p  , 1 ,..., q   of the stationary model (2) are known. Then: 

(A) E[ ]Â 0 , 2 T 1Var[ ] ( )  Â I Z Z , and 

(B) T 2 1 T 1 TE[( )( ) ] ( )     Â A Â A Z Z Z Z . □ 

Proof. Part (A) follows from part (A) of Theorem 1, recalling from Definition 2 that Σ0 = I+ZΩZT = 
1 T 1 T 1[ ( ) ]   I Z Z Z Z . To prove part (B), note from Remark 1 that 0

* Â A ZU . Hence, 
Â A = 1 0

0
 Â A = 1

0 *( ) ]  A ZU A = 1 1
0 0 *[( ) ]   I A ZU  , and TE[( )( ) ] Â A Â A  

= 2 1 1 1 T 1
0 0 0 0[( )( ) ]      I I Z Z     . Part (B) then follows from the two equivalent expressions 

for 0  recalled above. ■ 
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Theorem 3 – Convergence of Conditional and Unconditional Residuals. Under the assumptions of 
Theorems 1 and 2, invertibility of the stationary ARMA model (2) implies additionally that: 

(A) 0 2E[( ) ] 0i iÂ A  , 0 2 2E[( ) ]iÂ  , and 0 0E[ ] 0  ( )i jÂ Â i j   for increasing i and fixed j (at an 
either small or large value); 

(B) 2E[( ) ] 0i iÂ A  , 2 2E[ ]iÂ  , and E[ ] 0  ( )i jÂ Â i j   for increasing i and fixed j (at an 
either small or large value); and 

(C) (A) and (B) hold exactly for 1i p   and 1j  when q = 0. □ 

Proof. Part (B) of Theorem 1 can be written, recalling from the beginning of Section 2 that 
1


Z D V , as 

 
T

0 0 T 2 1 1T 2 T T1 1
1 1E[( )( ) ]     

    
 

V V 0
Â A Â A D D HV V H

0 0


 , (8) 

where the g×(�p+q) matrix V1 consists of the first max ,g p q { }  rows of V, and the n×g matrix H 
consists of the first g columns of 1


D . Similarly, part (B) of Theorem 2 can be written as 

1 T 1 T
T 2 1 1T1 1( )

E[( )( ) ]  
 

  
    

 

V Z Z V 0
Â A Â A D D

0 0


 

 2 1 T 1 T T
1 1( )   HV Z Z V H . (9) 

 Additionally, Theorems 1 and 2 imply that 

 0 2 0 0 TVar[ ] E[( )( ) ]   Â I Â A Â A  (10) 
and 
 2 TVar[ ] E[( )( ) ]   Â I Â A Â A , (11) 

respectively. It is now noted (see, for example, Ljung and Box 1979) that 1

D  is an n×n lower 

triangular parameter matrix with 1’s on the main diagonal and Ξt down the t�th subdiagonal, where the 
elements Ξt for 0,1,..., 1t n   satisfy the difference equation ( ) 0tB   , with Ξ0 = 1 and Ξt = 0 
for t < 0. Hence, the (�i,�j�)�th element of H in (8) and (9) is given by Ξi−j ( 1,...,i n ; 1,...,j g ). 
Noting finally that invertibility implies that Ξt → 0 as t increases, it can be seen that the (�i,�j�)�th element 
of both (8) and (9) tends to zero, and that the (�i,�i�)�th element of both (10) and (11) tends to one, as i 
increases. This proves parts (A) and (B) of the theorem. Part (C) follows from the fact that H in (8) and 
(9) has the form T[ , ]H I 0  (i.e., Ξt = 0 for all 0t  ) when q = 0 (i.e., in the case of pure 
autoregressive models). ■ 

 The main results of Theorems 1 through 3 can be summarized as follows: Assuming that the true 
parameter values in the stationary model given in (1) or (3) are perfectly known, it follows that (i) 

0 2
0( , )Â KW 0    with Σ0�=�I+ZΩZT, and (ii) 1 0 2 1

0 0( , ) Â Â 0   with 1
0
 =

1 T 1 T( )  I Z Z Z Z ; in addition, if the model considered is invertible, then (iii) both conditional 
and unconditional residuals converge in mean square to the model white noise disturbances, (iv) both 
conditional and unconditional residuals tend to be uncorrelated, with 0Var[ ]tÂ  converging from above 
and Var[ ]tÂ  converging from below to σ2, and (v) when q = 0 (i.e., in the case of pure autoregressive 
models), the convergence results stated in (iii) and (iv) occur exactly at time t = p + 1. Some aspects of 
the practical relevance of these results are considered in the following remarks: 
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Remark 5. Theorems 1 through 3 imply, in the first place, that both conditional and unconditional 
residuals should not be expected in general to follow white noise patterns, even under perfect knowledge 
of the true model parameter values. If such values are replaced by consistent estimates (which is usually 
the case in applied analyses with non-experimental data), then Theorems 1 through 3 are expected to hold 
at least asymptotically (i.e., approximately in finite samples), implying that, in practice, observed 
patterns in residuals computed as in Definitions 1 and 2 might constitute a mere indication of their 
theoretical properties instead of model misspecification. From Theorem 3, this possibility seems more 
likely to occur (especially for small sample sizes) when a model which has to be diagnostically checked 
contains a moving average part with at least one root on or near the unit circle. 

Remark 6. The results summarized above in point (iv) with regard to the convergence of 0Var[ ]tÂ  
(from above) and Var[ ]tÂ  (from below) to σ2, are eminently sensible, since the information contained in 
a given time series is used more efficiently when computing the unconditional residuals than when 
computing the conditional residuals (the unknown pre-sample values are set to zero for the conditional 
computation, whereas they are back-casted from available data for the unconditional computation; see 
Remarks 1 and 2). Hence, the unconditional computation is expected to give more accurate results. This 
property clearly suggests encouraging the use of the unconditional residuals against the conditional ones 
in model checking and forecasting. 

 Both unconditional residuals and innovations arise naturally when estimating scalar ARMA models 
through exact maximum likelihood (EML) (i.e., through numerical maximization of (3) with respect to ̂  
and 2̂ ). On the other hand, conditional residuals arise naturally when estimating univariate ARMA 
models through conditional maximum likelihood (CML) (i.e., conditional least squares), which may 
provide poor parameter estimates in many cases (especially for small samples and/or nearly noninvertible 
parameter values; see, for example, Ansley and Newbold 1980; and Box et al. 1994, ch. 7). This fact, 
together with the loss of information implied by the conditions imposed for computing conditional 
residuals, suggest again that such residuals computed after CML estimation constitute a far-from-ideal 
tool for model diagnostic checking. 

Remark 7. Theoretical properties of innovations under the assumption that the true parameter values  , 

1,..., p  , 1 ,..., q   of the stationary model (3) are known, can be found, for example, in Box et al. 
(1994, pp. 275-279) and the references cited therein. Specifically, it follows trivially from Definition 3 
that 1 2( , )Ê L W 0 F  , which implies that E[ ] 0tÊ  , 2Var[ ]t tÊ F , and Cov[ , ] 0t t kÊ Ê    
( 1, 2,..., ; 0)t n k  . Furthermore, the elements of Ê and F can be described in terms of several 
recursive algorithms applied to the state-space representation of model (3) (see, for example, Gardner et 
al. 1980, and Mélard 1984), which, for an invertible model, can be shown to converge to a steady state, 
with Ft converging to one from above and Êt converging to At in mean square; additionally, for pure 
autoregressive models these convergence results occur exactly at time t = p + 1 (refer, for example, to 
Harvey 1993, ch. 4 for further details). Hence, the innovation vector Ê shows theoretical properties 
which are similar to those of Theorems 1 through 3 for Â0 and Â, in spite of their numerical values being 
computed in practice through quite different procedures. In fact, it shown in the next section that any out 
of these three types of residuals can be used to compute a unique set of “normalized” residuals, which 
may prove useful for diagnostic checking of a tentatively entertained model. 
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4. RESIDUAL DIAGNOSTIC CHECKING IN UNIVARIATE MODELS 

 

 The theoretical properties of conditional residuals, unconditional residuals and innovations 
considered in Section 3, suggest that none of these three types of residuals, computed after model 
estimation as described in Section 2, should be expected to follow white noise patterns (not even 
approximately), especially for small samples and moving average parameter estimates close to 
noninvertibility. Note, however, that letting P represent a lower-triangular matrix such that Σ0 = 
I+ZΩZT = PPT, it follows from Theorem 1 (A), Theorem 2 (A) and Remark 7, that the three random 
vectors 1 0P Â , TP Â  and F Ê½  follow 2( , )0 I  distributions. In fact, 

 T T 1 0 T 1 0 1 0
0 ( )    P Â P Â P PP Â P Â , 

and, noting from (5) and (10) that 1 T 1T T  W K PP K LF F L ½ ½ , it can also be seen that 

 1 1 1 0 1 1 1 0 1 0ˆ ( ) ( )           F E F L W LF K Â K P K Â P Â½ ½ ½ . 
 Hence, 
 1 0 T ˆ  P Â P Â F E½ , (12) 

implying that, under the assumption that the true parameter values of the stationary model (3) are known, 
a vector of white noise “normalized” residuals can be defined in any of three equivalent ways using either 
Â0 (conditional residuals), Â (unconditional residuals) or Ê (innovations). 

 Furthermore, noting from (12) that 0
 Â A ZU , it follows for the normalized residual vector 

given, for example, in the first part of (12), that 1 0 1 1 ˆ( )  
   P Â A I P A P ZU , so that 

 1 0 1 0 T 2 1 1 TE[( )( ) ] [( ) ( ) ]        P Â A P Â A I P I P . (13) 

 Recalling that for an invertible model (see the proof of Theorem 3) the (�i,�i�)�th element of Σ0 = 
I+ZΩZT = PPT converges to one from above as i increases, it turns out that the (�i,�i�)�th element of P−1 
(which is strictly positive for all i�) converges to one from below as i increases, so (13) implies that the 
elements of (12) converge in mean square to the model white noise disturbances, with exact convergence 
occurring at t = p + 1 if q = 0. Hence, the mean-square convergence property shared by Â0, Â and Ê, 
is preserved through appropriate linear transformations as those stated in (12). 

 In practice, these results mean that when the true model parameter values are replaced by consistent 
estimates, the elements of the computed normalized residual vector 

 1 0 Tˆ ˆ ˆˆ    v P â P â F ê½  (14) 

should (at least approximately) follow white noise patterns and converge to the model unobservable 
random shocks, under the hypothesis that the entertained model is adequate. In particular, the use of v̂  in 
model diagnostic checking instead of â0 or â, might help to avoid a possibly incorrect interpretation of 
residual autocorrelation (recall Remark 5 in Section 3), whose only source in the case of the elements of 
v̂  is (at least approximately and apart from outliers) model misspecification. Furthermore, note that 
working with v̂  solves also the theoretical heteroskedasticity associated with all of â0, â and ê, which is 
expected to be present unless the estimated sequence 0 1 2

ˆ ˆ ˆ, , ,...    (recall the proof of Theorem 3) 
converges to zero very quickly. Some additional issues on computing and using the normalized residual 
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vector v̂  given in (14), are considered in the following two remarks: 

Remark 8. From a computational standpoint, the most convenient method for obtaining the elements of 
v̂  seems to be that based on the innovation vector ê, since, after model estimation, such method only 
requires n additional square roots and divisions (as opposed to a considerably larger number of operations 
required for computing T

0
ˆˆ ˆ ˆ I Z Z  , its Cholesky factor P̂ , and any of the two matrix-vector 

products 1 0ˆP â  or Tˆ ˆP a ). This fact, together with the apparent lack in previous literature of analytical 
expressions for both 0Var[ ]Â  and Var[ ]Â  (as opposed to well-known results on Var[ ]Ê ), might 
explain why computer programs for estimation of ARMA models based on the innovations approach 
(e.g., computer programs based on state-space methods) usually provide the practitioner with both the 
computed innovations tê  and the corresponding normalized residuals ˆˆt t tv F ê ½  (see, for example, 
Brockwell and Davis 2002, pp. 164-167), whereas computer programs based on other approaches usually 
give only the conditional residuals or the unconditional residuals. Note, however, that the calculations 
required for obtaining 1 0ˆP â  or Tˆ ˆP a  need to be carried out only after model estimation (i.e., they are 
not explicitly required for estimation purposes), and that, indeed, such calculations involve a negligible 
amount of computing time for most modern computers. 

Remark 9. Ansley and Newbold (1979, pp. 551-553) have demonstrated through simulation experiments 
that the use of the normalized residual vector v̂  instead of the unconditional residual vector â (especially 
for seasonal models), extends the range of cases for which statistics frequently used in model diagnostic 
checking (e.g., Ljung and Box 1978) can be usefully interpreted through the usual asymptotic significance 
levels. However, these authors suggest (i) a single way of computing v̂  (Ansley 1979), and (ii) that the 
only reason for the superior sampling properties of tests based on v̂  is that unconditional residuals can, 
in moderate sample sizes, have variance much smaller than σ2 (recall (11) and (9) above), whereas 
normalized residuals have the same variance as the model random shocks. Taking into account the results 
from Sections 3 and 4 of the present article, the conclusions derived by Ansley and Newbold (1979) can 
be expanded as follows: (i) the residual vector v̂  can be computed in any of several equivalent ways 
(apart from the usual innovations approach), and (ii) the practical benefits from using v̂  instead of â stem 
from the fact that (11) is not a diagonal matrix, so not only the unconditional residuals have variance 
smaller than σ2, but (more importantly) they are also autocorrelated. Note that point (i) above is 
especially relevant in practice, since the computation of v̂  through â and â0 is now possible by using the 
output generated by any computer program for estimation of ARMA models outside the innovations 
framework. As a final comment, it may be noted that the simulation results reported by Ansley and 
Newbold (1979) are so detailed that no additional simulation evidence seems to be required to 
demonstrate the expected practical benefits from using v̂  instead of â (or â0 for that matter) in model 
diagnostic checking, especially when the model considered contains moving average roots on or near the 
unit circle and/or when the sample size n is small. Practical examples illustrating this point are 
considered in the next section. 

 

5. PRACTICAL EXAMPLES 

 

 The examples developed in this section are focused on the specific point that unconditional residuals 
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showing significant autocorrelation patterns do not necessarily imply model misspecification. Similar 
examples might be developed for conditional residuals. However (recall Remark 6 above), the properties 
of such residuals, as well as their link to conditional maximum likelihood or least squares estimation, 
strongly suggest avoiding using them for model checking in practice. Hence, examples on conditional 
residual are not considered below. 

 

5.1. Expected Patterns in Residual Sample Autocorrelations 

 

 In the first part of this section, we briefly describe which patterns are expected to arise in the sample 
autocorrelations of unconditional residuals for correctly specified models. In order to describe such 
patterns, we have carried out a comprehensive set of exercises consisting of the following operations: (i) 
set up several ARMA models for unspecified time series of various lengths, (ii) compute the theoretical 
residual covariance matrices for such models (which depend just on the model parameters, but not on any 
specific time series), and (iii) evaluate the expected sample ACF of the corresponding model residuals. In 
strict agreement with both the theoretical results of Section 3 and the simulation results of Ansley and 
Newbold (1979) (see Remark 9 above), we have found that unconditional residuals showing clear 
autocorrelation patterns are expected to arise in several cases, especially for models containing moving 
average roots on or near the unit circle. 

 To illustrate, consider the extremely popular MA(1)×MA(1)12 model for a stationary, zero-mean 
process {Wt�} which is observed on a monthly basis, 

 12
1 1(1 )(1 )t tW B B A   , 

where {At�} is a white noise process with unit variance. For this multiplicative model, and for several 
values of θ1, Θ1 and n (the number of observations), we have computed the theoretical covariance matrix 

T 1( )I Z Z  of the unconditional residuals (see Theorem 2), along with the quantities 

 1
,

1

n j

j i i jn j i
 



 
   for j = 1, 2, …, 

where δi,j represents the ( , )i j th element of T 1( )I Z Z . The quantity ρj is an expected value of the 
j�th order sample autocorrelation of the unconditional residuals. Hence, if the sequence ρ1, ρ2, … exhibits 
any clear pattern, then such pattern is expected to arise as well in the sample ACF of the computed 
unconditional residuals for the corresponding estimated model (as long as the model is adequate and 
irrespective of the specific time series that might have been used to estimate it). In this respect, Fig. 1 
contains eight plots of the sequence ρ1, ρ2, ..., ρ39 associated with eight different instances of the 
multiplicative MA(1)×MA(1)12 model. 

 From Fig. 1, it can be seen that the most significant features of the expected ACF happen at the 
annual lags (12, 24 and 36); additionally, these features are more significant when the MA(1)12 operator 
is close to being noninvertible. The influence of the regular MA(1) operator on the appearance of the 
expected ACF is much less significant. Finally, the patterns in the expected ACF tend to diminish as the 
sample size increases. Hence, as a general rule, one should expect to find significant patterns in the 
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Fig. 1. Expected Sample Autocorrelations for the Unconditional Residuals Associated with the 

Multiplicative MA(1)×MA(1)12 Model. 

 

sample ACF of the unconditional residuals computed for any model with an estimated MA(1)12 term 
close to being noninvertible. This is an important result from a practical point of view, since many 
seasonal time series found in practice seem to require models with such terms to be well described. The 
second part of this section gives an example on this point using actual data. 

 For some other types of models (especially for pure autoregressive models), the results of 
computations analogous to those described for the MA(1)×MA(1)12 model are not so significant. 
Nonetheless, such results do confirm without ambiguities both the theoretical results of Section 3 and the 
simulation results of Ansley and Newbold (1979), namely that autocorrelation patterns are expected to be 
present (with varying degrees of intensity) in the unconditional residuals for any estimated ARMA model. 

 

5.2. An Example with Actual Data 

 

 All of the results presented so far suggest that using the normalized residuals for model checking, 
instead of the conditional or the unconditional residuals, might help to avoid a possibly incorrect 
interpretation of residual autocorrelation. The example developed below shows that unconditional 
residuals with significant autocorrelation patterns do not necessarily imply model misspecification. 
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Fig. 2. Original Series: ty (Traffic Accidents with Victims on Spain Roads, in thousands). 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Seasonally Differenced Series: 12

12 (1 )t ty B y   . 

 

Table 1. Unit Root Tests for the Series 12 ty  Displayed in Fig. 3. 

ADF-ERS Test [†] 
(H0�: Series has a unit root) 

PP Test [†] 
(H0�: Series has a unit root) 

KPSS Test [†] 
(H0�: Series is stationary) 

1% < p-value < 5% p-value < 1% p-value > 10% 

[†] ADF-ERS: Elliot-Rothenberg-Stock modification of Augmented Dickey-Fuller, PP: Phillips-Perron, KPSS: Kwiatkowski-
Phillips-Schmidt-Shin. See Q.M.S. (2002, pp. 329-337) for the details. In all cases, the auxiliary regressions were run with an 
intercept and without a linear trend. 
 

 We consider the monthly series Traffic Accidents with Victims on Spain Roads, obtained from 
http:¦www.ine.es (Instituto Nacional de Estadística, Spain) on June 16, 2006. We use data for the period 
January 1994 through December 2000 for modelling purposes, and hold back data for January 2001 
through December 2003 for forecasting evaluation. All of the time series plots are standardized for easier 
comparison. 

 The original data shown in Fig. 2 present a clear seasonal pattern, as well as a possible permanent 
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level shift around the end of 1997. Hence, we consider the seasonally differenced series shown in Fig. 3, 
which reflects two notable intervention events: a possible step occurring on November 1997, due to 
policy measures aimed at increasing new car registrations in Spain (the so-called “Plan Renove”), as well 
as a clear impulse on April 1995. That step event, along with the results displayed in Table 1 on unit root 
tests on the seasonally differenced series of Fig. 3, suggest that such series is possibly stationary. Hence, 
we estimate through EML the intervention model shown in (15) below, which includes the step, 

S,1997:11
t , and the impulse, I,1995:04

t , mentioned previously, as well as two seasonal ARMA terms: a 
second-order autoregressive term with its first coefficient set to zero (because it was clearly insignificant 
in a previous estimation run), and a first-order moving average term which turns out to be estimated 
noninvertible, suggesting deterministic seasonal patterns in the original series: 

 

( 0.037 ) S,1997:11 I,1995:04

( 0.130 )
( 0.054 )

24 12
12

( 0.131) ( 0.017 ) ( 0.117 )

0.197

ˆ0.326 ,
1 0.704

ˆ(1 0.426 )( 0.032 ) (1 0.999 ) ,

ˆ72, 0.122, 31.835.

t t t t

t t

y
B

B B â

n l

  



 

  


    

  

 (15) 

 The standard errors (in parentheses) indicate that the model parameters are clearly significant, and 
the estimated standard deviation of the model disturbances ( ̂ ) as well as the logarithm of the exact log-
likelihood (l*) suggest an adequate fit. 

 The unconditional residuals for model (15) are shown in Fig. 4, and they seem to be clearly 
stationary. However, their simple (ACF) and partial (PACF) sample autocorrelations indicate that they 
are significantly autocorrelated (especially at the seasonal lags). In this respect, the usual Ljung-Box 
statistic rejects the estimated model, even at the 1% significance level. 

 The picture changes notably when we look at the normalized residuals instead. The normalized 
residuals for model (15) are shown in Fig. 5. These residuals remain plausibly stationary and, as opposed 
to the unconditional residuals, they do not show any significant autocorrelation, even at the 20% 
significance level. 

 Hence, on the basis of the normalized residuals of Fig. 5, the intervention model (15) cannot be 
rejected, although it would have been discarded if the unconditional residuals of Fig. 4 had been used for 
model checking. 

 For the purpose of forecasting comparison, we have built an additional model for the time series 
displayed in Fig. 2. To this end, we apply an additional regular difference to the previously seasonally 
differenced series, and obtain the clearly stationary series shown in Fig. 6. We consider the same 
intervention events as before, and estimate through EML the intervention model shown in (16) below, 
which includes the step and the impulse considered previously, as well as three ARMA terms: the same 
two seasonal terms as in model (15) (although the moving average now seems invertible), plus an 
additional regular first-order moving average term. The values of both ̂  and l* suggest a slightly worse 
fit for this model than in the case of model (15). 
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Fig. 4. Unconditional Residuals for Estimated Intervention Model (15). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Normalized Residuals for Estimated Intervention Model (15). 



 Computing and Using Residuals in Time Series Models 15 

 

  

1994 1995 1996 1997 1998 1999 2000

n = 71, Mean = 0.002, Standard Deviation = 0.260

−3

−2

−1

0

1

2

3 

 

 

 

 

 

 

 

 
Fig. 6. Regularly and Seasonally Differenced Series: 12
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( 0.037 ) S,1997:11 I,1995:04

( 0.136 )
( 0.054 )

24 12
12

( 0.142 ) ( 0.066 ) ( 0.237 )

0.188

ˆ0.375 ,
1 0.766

ˆ ˆ(1 0.378 ) (1 0.830 )(1 0.619 ) ,

ˆ71, 0.142, 30.827.

t t t t

t t

y
B

B B B a

n l

  



 

  


    

  

 (16) 

 For this second model, the unconditional residuals of Fig. 7 are clearly stationary, and do not show 
any significant autocorrelation. Hence, as opposed to model (15), model (16) would not be discarded on 
the basis of the unconditional residuals. This is also the case for model (16) if the normalized residuals of 
Fig. 8 are used instead: the normalized residuals are also clearly stationary and do not show any 
significant autocorrelation either. In summary, as opposed to the case of model (15), on the basis of both 
types of residuals model (16) cannot be rejected. 

 To conclude this example, we have used both models (15) and (16) for computing out-of-sample 
forecasts for the period January 2001 through December 2003, for a total of 36 consecutive months. Fig. 
9 represents the point forecasts (as well as the 95% confidence intervals) obtained with each model, along 
with the actually observed data for the time period considered. Looking at both the plots and the forecast 
accuracy measures displayed in Fig. 9, it can be seen that model (15) forecasts better than model (16) for 
the time period considered, most notably for the last of the three forecasting years. Recall now that model 
(15) (the one providing better forecasts) would have been discarded if the unconditional residuals of Fig. 
4 had been used for diagnostic checking, whereas it was clearly not rejected by the normalized residuals 
of Fig. 5. Model (16) (the one providing worse forecasts) was not rejected in any case. 

 In summary, this example has shown that using unconditional residuals for model checking may lead 
to discarding adequate models (which may lead in turn to discarding useful forecasts), and that 
normalized residuals may help in solving this type of problem. This can be especially relevant within the 
context of automatic model building and forecasting systems, where user involvement and inspection are 
usually low. 
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Fig. 7. Unconditional Residuals for Estimated Intervention Model (16). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Normalized Residuals for Estimated Intervention Model (16). 
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Fig. 9. Forecasts Obtained with Models (15) (upper panel) and (16) (lower panel). Actually observed data are represented with a 
darker color (starting one year before the forecasting origin), and forecasts are represented with a lighter color. 95% confidence 
bands are represented with dashed lines. Forecast accuracy measures are reported as RMSE (root mean squared error), MAE  

(mean absolute error) and MAPE (mean absolute percentage error). 

 

6. RESIDUALS IN MULTIVARIATE MODELS 

 

 This section gives some details on extending the results of the previous sections to the case of 
stationary vector ARMA (VARMA) models. It may be noted that, with minor modifications, the results 
presented below hold also for any time series model which can be cast into a standard, stationary 
VARMA model, including, among many others, transfer function-noise models (Mauricio 1996) and 
partially nonstationary multivariate models with reduced rank structure for cointegrated processes 
(Mauricio 2006a). 

 Let an observed multiple time series wt (t = 1, 2, …, n), with T
1[ ,..., ]t t tmw ww  (m�≥�2), be 

generated by a stationary vector time series process {Wt�}, with T
1[ ,..., ]t t tmW WW , following the 

VARMA model 
 ( ) ( )t tB BW A  , (17) 

where 1( )
p i
im iB B I   and 1( )

q i
im iB B I   are matrix polynomials in the backshift 
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operator B of degrees p and q, , 1 ,..., p   and 1 ,..., q   are m m  parameter matrices, 
E[ ]t t t W W W , and {At�} is a sequence of IID(�0,�Σ�) 1m  random vectors, with   (m×m) 

symmetric and positive definite. For stationarity it is required that the roots of |Φ(�x�)|=�0 lie outside the 
unit circle. A similar condition on |Θ(�x�)| ensures that the model is invertible. Additional conditions on 
Φ(�B�) and Θ(�B�) for parameter uniqueness, such as those considered by Reinsel (1997, pp. 37-40), are 
also assumed. 

 Let T T T
1[ ,..., ]nW W W    (nm×1), T T T

1[ ,..., ]nA A A  (nm×1), and T T
1 0[ ,...,p U W W  , 

T T T
1 0,..., ]qA A  [(�p+q)m×1], and consider Eq. (17) for t = 1, 2, …, n. Then, the multiple time series 

T T T
1[ ,..., ]nw w w  can be regarded as a particular realization of a random vector 

T T T
1[ ,..., ]nW W W  following the model 

  D W D A VU 
 , (18) 

where DΦ and DΘ are nm×nm parameter block-matrices with identity matrices of order m on the main 
diagonal and −Φj and −Θj, respectively, down the j�th subdiagonal, and V is an nm×(�p+q)m block-
matrix with ij p i j V   (i = 1, …, p�; j = i, …, p), ij q i j p  V   (i = 1, …, q�; j = p+i, …, 
p+q), and zeros elsewhere. Noting (18), it can be seen that 

 
T 1 T T 1T

1 T 1T

E[ ] ( )

( ) ,

 

 

    

    

WW D D I D V V D

K I Z Z K

    

 

 
 

where 1K D D  , 1Z D V  and T
*E[ ] U U  are parameter matrices of dimensions nm×nm, 

nm×(�p+q)m and (�p+q)m×(�p+q)m, respectively, with Ω being readily expressible in terms of 

1 1,..., , ,...,p q     and Σ as described, for example, in Reinsel (1997, pp. 59-60). 

 Using hats (ˆ) to represent estimates and letting T T T
1[ ,..., ]nw w w   , with ˆt t w w   and 

ˆˆ E[ ]t W  (t = 1, …, n), the three types of residuals considered in Sections 2 and 3 can be defined for 
model (18) as follows: 

Definition M1. The conditional residuals associated with model (18) are the n block-elements of the 
nm×1 vector 0 ˆâ Kw . The elements of 0 0T 0T 0T T

1 2[ , ,..., ]nâ â â â  can be computed recursively for a 
given set of parameter estimates as 

 0 0

1 1
( 1, 2,..., )

p q

t t j t j j t j
j j

t n 
 

    â w w â   , 

with every iw  and 0
iâ  for i < 1 replaced by 0 (i.e., with every pre-sample quantity set to zero). □ 

Definition M2. The unconditional residuals associated with model (18) are the n block-elements of the 
nm×1 vector 1 0

0
ˆ ˆ( )  â I â  , where 0̂  is an estimate of T

0 ( )  I Z Z   . The elements of 
T T T T
1 2[ , ,..., ]nâ â â â  can be computed recursively for a given set of parameter estimates as 

 
1 1

( 1, 2,..., )
p q

t t j t j j t j
j j

t n 
 

    â w w â   , 

with ( 0,...,1 )i i p w  and ( 0,...,1 )i i q â  replaced by the corresponding elements in the back-
cast vector 1 T 1 1 T 1 0ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) ] ( )   

   û Z I Z Z I â   . Refer to Mauricio (1995) and Reinsel 
(1997, Sec. 5.3.1) for further details. □ 
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Definition M3. The innovations associated with model (18) are the n block-elements of the nm×1 vector 
1 1 0ˆ ˆˆ( )  ê L w KL â , where L̂  is an estimate of the nm×nm unit lower-triangular block matrix L in 

the factorization T TE[ ]WW LFL  , with F being a block-diagonal nm×nm matrix with symmetric, 
positive definite diagonal blocks tF  ( 1, 2,..., )t n . The elements of ê (along with the corresponding 
estimates ˆ

tF ) are frequently computed through recursive algorithms of the Chandrasekhar type (see, for 
example, Shea 1989), although this is rarely the most efficient option (see Mauricio 2002). □ 

 The results considered in Sections 3 and 4 can be easily extended to the case of stationary VARMA 
models. Theorems M1 through M4 below summarize the main results. Proofs are omitted because they 
are essentially identical to the ones provided in Sections 3 and 4 for the univariate case. 

Theorem M1. Let 0 Â KW  be the random vector associated with the conditional residuals given in 
Definition M1, under the assumption that the true parameter values of model (18) are known. Then, 

0 T[ , ( ) ] Â 0 I Z Z   and 0 0 T TE[( )( ) ]  Â A Â A Z Z . □ 

Theorem M2. Let 1 0
0( )  Â I Â   be the random vector associated with the unconditional residuals 

given in Definition M2, under the assumption that the true parameter values of the stationary model (18) 
are known. Then, 1

0[ , ( ) ( )] Â 0 I I   , where 0  is given in Definition M2, and 
Tˆ ˆE[( )( ) ] A A A A  = 1 T 1 1 T[ ( ) ]   Z Z I Z Z  . □ 

Theorem M3. Under the assumptions of Theorems M1 and M2, invertibility of the stationary VARMA 
model (18) implies additionally that: 

(A) 0 0 TE[( )( ) ]i i i i  Â A Â A 0 , 0 0TE[ ]i i Â Â  , 0 0TE[ ]  ( )i j i j Â Â 0  for increasing i and 
fixed j (at an either small or large value); 

(B) TE[( )( ) ]i i i i  Â A Â A 0 , TE[ ]i i Â Â  , TE[ ]  ( )i j i j Â Â 0  for increasing i and fixed j 
(at an either small or large value); and 

(C) (A) and (B) hold exactly for 1i p   and 1j  when q = 0. □ 

 Theoretical properties of innovations under the assumption that the true parameter values of model 
(18) are known, can be found, for example, in Reinsel (1997, pp. 231-232) and the references cited 
therein. Specifically, it follows from Definition M3 that 1 ( , )Ê L W 0 F  . Additionally, the elements 
of Ê and F can be described in terms of a recursive algorithm of the Chandrasekhar type (see, for 
example, Shea 1989), which, for an invertible model, can be shown to converge to a steady state, with 

tF  converging to Σ and ˆ
tE  converging to tA  in mean square. Furthermore, for pure autoregressive 

models these convergence results occur exactly at time t = p + 1. 

Theorem M4. Let 0 Â KW , 1 0
0( )  Â I Â   and 1Ê L W  be the random vectors associated 

with the three types of residuals given in Definitions M1, M2 and M3, respectively, under the assumption 
that the true parameter values of the stationary model (18) are known. Let P represent a lower-triangular 
matrix such that T T

0 ( )   I Z Z PP   . Then, there exists a normalized residual vector 
1 0 T 1ˆ ( )     V P Â P I Â F Ê ½ , with the property that ˆ ( , )V 0 I . Additionally, invertibility 

of model (18) implies that the elements of V̂  converge in mean square to the model disturbances, with 
exact convergence occurring at time t = p + 1 when q = 0.  □ 

 As in the case of univariate models, the use of the normalized residuals in model diagnostic checking 
instead of the conditional or the unconditional residuals may help to avoid a possibly incorrect 
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interpretation of residual autocorrelation and cross-correlation, whose only source in the case of the 
normalized residuals is (at least approximately and apart from outliers) model misspecification. 

 

7. CONCLUSIONS 

 

 Both the theoretical developments and the examples on computing and using residuals in time series 
models presented in this article have shown the following important points: 

1. It is possible to characterize accurately the numerical and statistical properties of both conditional and 
unconditional residuals, which, in spite of having received very limited attention in the previous 
literature, are frequently used in practice when analyzing time series data. 

2. In particular, both conditional and unconditional residuals follow approximate distributions with 
covariance matrices for which easy-to-compute expressions have been given for the first time. 

3. Invertibility plays a key role for establishing statistical convergence of residuals to white noise, so 
that residual autocorrelation should be interpreted carefully when dealing with models with parameter 
values on or near the boundary of the invertibility region. 

4. A set of uncorrelated and homoscedastic residuals can be obtained in any of several equivalent ways. 
Using this set of residuals for model checking can improve the chances of not discarding a tentative 
model with autocorrelated unconditional residuals when the model is adequately specified. 

 Routine and uncared-for application of standard residual-checking procedures is not uncommon in 
current time series analysis, mainly due to the widespread availability of “user-friendly” and “automatic-
modelling” software packages implementing them. It is true that such procedures may work sufficiently 
well in many cases. However, it is also true that a slight additional effort on the applied researcher’s part, 
required by a few simple residual computations for model diagnostic checking, may give clear benefits in 
cases of practical interest which are not difficult to come across. 
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